Standard library header <algorithm>
From cppreference.com
This header is part of the algorithm library.
Contents |
[edit] Functions
Non-modifying sequence operations | |
(C++11)(C++11)(C++11) |
checks if a predicate is true for all, any or none of the elements in a range (function template) |
applies a function to a range of elements (function template) | |
(C++17) |
applies a function object to the first n elements of a sequence (function template) |
returns the number of elements satisfying specific criteria (function template) | |
finds the first position where two ranges differ (function template) | |
determines if two sets of elements are the same (function template) | |
(C++11) |
finds the first element satisfying specific criteria (function template) |
finds the last sequence of elements in a certain range (function template) | |
searches for any one of a set of elements (function template) | |
finds the first two adjacent items that are equal (or satisfy a given predicate) (function template) | |
searches for a range of elements (function template) | |
searches a range for a number of consecutive copies of an element (function template) | |
Modifying sequence operations | |
(C++11) |
copies a range of elements to a new location (function template) |
(C++11) |
copies a number of elements to a new location (function template) |
copies a range of elements in backwards order (function template) | |
(C++11) |
moves a range of elements to a new location (function template) |
(C++11) |
moves a range of elements to a new location in backwards order (function template) |
copy-assigns the given value to every element in a range (function template) | |
copy-assigns the given value to N elements in a range (function template) | |
applies a function to a range of elements (function template) | |
assigns the results of successive function calls to every element in a range (function template) | |
assigns the results of successive function calls to N elements in a range (function template) | |
removes elements satisfying specific criteria (function template) | |
copies a range of elements omitting those that satisfy specific criteria (function template) | |
replaces all values satisfying specific criteria with another value (function template) | |
copies a range, replacing elements satisfying specific criteria with another value (function template) | |
swaps the values of two objects (function template) | |
swaps two ranges of elements (function template) | |
swaps the elements pointed to by two iterators (function template) | |
reverses the order of elements in a range (function template) | |
creates a copy of a range that is reversed (function template) | |
rotates the order of elements in a range (function template) | |
copies and rotate a range of elements (function template) | |
(until C++17)(C++11) |
randomly re-orders elements in a range (function template) |
removes consecutive duplicate elements in a range (function template) | |
creates a copy of some range of elements that contains no consecutive duplicates (function template) | |
Partitioning operations | |
(C++11) |
determines if the range is partitioned by the given predicate (function template) |
divides a range of elements into two groups (function template) | |
(C++11) |
copies a range dividing the elements into two groups (function template) |
divides elements into two groups while preserving their relative order (function template) | |
(C++11) |
locates the partition point of a partitioned range (function template) |
Sorting operations | |
(C++11) |
checks whether a range is sorted into ascending order (function template) |
(C++11) |
finds the largest sorted subrange (function template) |
sorts a range into ascending order (function template) | |
sorts the first N elements of a range (function template) | |
copies and partially sorts a range of elements (function template) | |
sorts a range of elements while preserving order between equal elements (function template) | |
partially sorts the given range making sure that it is partitioned by the given element (function template) | |
Binary search operations (on sorted ranges) | |
returns an iterator to the first element not less than the given value (function template) | |
returns an iterator to the first element greater than a certain value (function template) | |
determines if an element exists in a certain range (function template) | |
returns range of elements matching a specific key (function template) | |
Set operations (on sorted ranges) | |
merges two sorted ranges (function template) | |
merges two ordered ranges in-place (function template) | |
returns true if one set is a subset of another (function template) | |
computes the difference between two sets (function template) | |
computes the intersection of two sets (function template) | |
computes the symmetric difference between two sets (function template) | |
computes the union of two sets (function template) | |
Heap operations | |
(C++11) |
checks if the given range is a max heap (function template) |
(C++11) |
finds the largest subrange that is a max heap (function template) |
creates a max heap out of a range of elements (function template) | |
adds an element to a max heap (function template) | |
removes the largest element from a max heap (function template) | |
turns a max heap into a range of elements sorted in ascending order (function template) | |
Minimum/maximum operations | |
(C++17) |
clamps a value between a pair of boundary values (function template) |
returns the greater of the given values (function template) | |
returns the largest element in a range (function template) | |
returns the smaller of the given values (function template) | |
returns the smallest element in a range (function template) | |
(C++11) |
returns the smaller and larger of two elements (function template) |
(C++11) |
returns the smallest and the largest elements in a range (function template) |
returns true if one range is lexicographically less than another (function template) | |
(C++11) |
determines if a sequence is a permutation of another sequence (function template) |
generates the next greater lexicographic permutation of a range of elements (function template) | |
generates the next smaller lexicographic permutation of a range of elements (function template) |
[edit] Synopsis
#include <initializer_list> namespace std { // non-modifying sequence operations: template <class InputIterator, class Predicate> bool all_of(InputIterator first, InputIterator last, Predicate pred); template <class InputIterator, class Predicate> bool any_of(InputIterator first, InputIterator last, Predicate pred); template <class InputIterator, class Predicate> bool none_of(InputIterator first, InputIterator last, Predicate pred); template<class InputIterator, class Function> Function for_each(InputIterator first, InputIterator last, Function f); template<class InputIterator, class Size, class UnaryFunction> InputIterator for_each_n(InputIterator first, Size n, UnaryFunction f); template<class InputIterator, class T> InputIterator find(InputIterator first, InputIterator last, const T& value); template<class InputIterator, class Predicate> InputIterator find_if(InputIterator first, InputIterator last, Predicate pred); template<class InputIterator, class Predicate> InputIterator find_if_not(InputIterator first, InputIterator last, Predicate pred); template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<class InputIterator, class ForwardIterator> InputIterator find_first_of(InputIterator first1, InputIterator last1, ForwardIterator first2, ForwardIterator last2); template<class InputIterator, class ForwardIterator, class BinaryPredicate> InputIterator find_first_of(InputIterator first1, InputIterator last1, ForwardIterator first2, ForwardIterator last2, BinaryPredicate pred); template<class ForwardIterator> ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class BinaryPredicate> ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last, BinaryPredicate pred); template<class InputIterator, class T> typename iterator_traits<InputIterator>::difference_type count(InputIterator first, InputIterator last, const T& value); template<class InputIterator, class Predicate> typename iterator_traits<InputIterator>::difference_type count_if(InputIterator first, InputIterator last, Predicate pred); template<class InputIterator1, class InputIterator2> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); template<class InputIterator1, class InputIterator2> bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); template<class ForwardIterator1, class ForwardIterator2> bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, BinaryPredicate pred); template<class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search( ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search( ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<class ForwardIterator, class Size, class T> ForwardIterator search_n(ForwardIterator first, ForwardIterator last, Size count, const T& value); template<class ForwardIterator, class Size, class T, class BinaryPredicate> ForwardIterator search_n(ForwardIterator first, ForwardIterator last, Size count, const T& value, BinaryPredicate pred); // modifying sequence operations: // copy: template<class InputIterator, class OutputIterator> OutputIterator copy(InputIterator first, InputIterator last, OutputIterator result); template<class InputIterator, class Size, class OutputIterator> OutputIterator copy_n(InputIterator first, Size n, OutputIterator result); template<class InputIterator, class OutputIterator, class Predicate> OutputIterator copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred); template<class BidirectionalIterator1, class BidirectionalIterator2> BidirectionalIterator2 copy_backward( BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result); // move: template<class InputIterator, class OutputIterator> OutputIterator move(InputIterator first, InputIterator last, OutputIterator result); template<class BidirectionalIterator1, class BidirectionalIterator2> BidirectionalIterator2 move_backward( BidirectionalIterator1 first, BidirectionalIterator1 last, BidirectionalIterator2 result); // swap: template<class ForwardIterator1, class ForwardIterator2> ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2); template<class ForwardIterator1, class ForwardIterator2> void iter_swap(ForwardIterator1 a, ForwardIterator2 b); template<class InputIterator, class OutputIterator, class UnaryOperation> OutputIterator transform(InputIterator first, InputIterator last, OutputIterator result, UnaryOperation op); template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryOperation> OutputIterator transform(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, OutputIterator result, BinaryOperation binary_op); template<class ForwardIterator, class T> void replace(ForwardIterator first, ForwardIterator last, const T& old_value, const T& new_value); template<class ForwardIterator, class Predicate, class T> void replace_if(ForwardIterator first, ForwardIterator last, Predicate pred, const T& new_value); template<class InputIterator, class OutputIterator, class T> OutputIterator replace_copy(InputIterator first, InputIterator last, OutputIterator result, const T& old_value, const T& new_value); template<class InputIterator, class OutputIterator, class Predicate, class T> OutputIterator replace_copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred, const T& new_value); template<class ForwardIterator, class T> void fill(ForwardIterator first, ForwardIterator last, const T& value); template<class OutputIterator, class Size, class T> OutputIterator fill_n(OutputIterator first, Size n, const T& value); template<class ForwardIterator, class Generator> void generate(ForwardIterator first, ForwardIterator last, Generator gen); template<class OutputIterator, class Size, class Generator> OutputIterator generate_n(OutputIterator first, Size n, Generator gen); template<class ForwardIterator, class T> ForwardIterator remove(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class Predicate> ForwardIterator remove_if(ForwardIterator first, ForwardIterator last, Predicate pred); template<class InputIterator, class OutputIterator, class T> OutputIterator remove_copy(InputIterator first, InputIterator last, OutputIterator result, const T& value); template<class InputIterator, class OutputIterator, class Predicate> OutputIterator remove_copy_if(InputIterator first, InputIterator last, OutputIterator result, Predicate pred); template<class ForwardIterator> ForwardIterator unique(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class BinaryPredicate> ForwardIterator unique(ForwardIterator first, ForwardIterator last, BinaryPredicate pred); template<class InputIterator, class OutputIterator> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result); template<class InputIterator, class OutputIterator, class BinaryPredicate> OutputIterator unique_copy(InputIterator first, InputIterator last, OutputIterator result, BinaryPredicate pred); template<class BidirectionalIterator> void reverse(BidirectionalIterator first, BidirectionalIterator last); template<class BidirectionalIterator, class OutputIterator> OutputIterator reverse_copy(BidirectionalIterator first, BidirectionalIterator last, OutputIterator result); template<class ForwardIterator> ForwardIterator rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator last); template<class ForwardIterator, class OutputIterator> OutputIterator rotate_copy( ForwardIterator first, ForwardIterator middle, ForwardIterator last, OutputIterator result); template<class RandomAccessIterator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class RandomNumberGenerator> void random_shuffle(RandomAccessIterator first, RandomAccessIterator last, RandomNumberGenerator&& rand); template<class RandomAccessIterator, class UniformRandomNumberGenerator> void shuffle(RandomAccessIterator first, RandomAccessIterator last, UniformRandomNumberGenerator&& rand); // partitions: template <class InputIterator, class Predicate> bool is_partitioned(InputIterator first, InputIterator last, Predicate pred); template<class ForwardIterator, class Predicate> ForwardIterator partition(ForwardIterator first, ForwardIterator last, Predicate pred); template<class BidirectionalIterator, class Predicate> BidirectionalIterator stable_partition(BidirectionalIterator first, BidirectionalIterator last, Predicate pred); template <class InputIterator, class OutputIterator1, class OutputIterator2, class Predicate> pair<OutputIterator1, OutputIterator2> partition_copy(InputIterator first, InputIterator last, OutputIterator1 out_true, OutputIterator2 out_false, Predicate pred); template<class ForwardIterator, class Predicate> ForwardIterator partition_point(ForwardIterator first, ForwardIterator last, Predicate pred); // sorting and related operations: // sorting: template<class RandomAccessIterator> void sort(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void stable_sort(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void stable_sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last, Compare comp); template<class InputIterator, class RandomAccessIterator> RandomAccessIterator partial_sort_copy( InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last); template<class InputIterator, class RandomAccessIterator, class Compare> RandomAccessIterator partial_sort_copy( InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, Compare comp); template<class ForwardIterator> bool is_sorted(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> bool is_sorted(ForwardIterator first, ForwardIterator last, Compare comp); template<class ForwardIterator> ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last, Compare comp); template<class RandomAccessIterator> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void nth_element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterator last, Compare comp); // binary search: template<class ForwardIterator, class T> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); template<class ForwardIterator, class T> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); template<class ForwardIterator, class T> pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); template<class ForwardIterator, class T> bool binary_search(ForwardIterator first, ForwardIterator last, const T& value); template<class ForwardIterator, class T, class Compare> bool binary_search(ForwardIterator first, ForwardIterator last, const T& value, Compare comp); // merge: template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class BidirectionalIterator> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> void inplace_merge(BidirectionalIterator first, BidirectionalIterator middle, BidirectionalIterator last, Compare comp); // set operations: template<class InputIterator1, class InputIterator2> bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template<class InputIterator1, class InputIterator2, class Compare> bool includes( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp); template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_union(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_intersection( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_intersection( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_difference( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_difference( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); template<class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_symmetric_difference( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result); template<class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_symmetric_difference( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp); // heap operations: template<class RandomAccessIterator> void push_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void push_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void pop_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void pop_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void make_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void make_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> void sort_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> void sort_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> bool is_heap(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> bool is_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp); template<class RandomAccessIterator> RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last); template<class RandomAccessIterator, class Compare> RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last, Compare comp); // minimum and maximum: template<class T> const T& min(const T& a, const T& b); template<class T, class Compare> const T& min(const T& a, const T& b, Compare comp); template<class T> T min(initializer_list<T> t); template<class T, class Compare> T min(initializer_list<T> t, Compare comp); template<class T> const T& max(const T& a, const T& b); template<class T, class Compare> const T& max(const T& a, const T& b, Compare comp); template<class T> T max(initializer_list<T> t); template<class T, class Compare> T max(initializer_list<T> t, Compare comp); template<class T> pair<const T&, const T&> minmax(const T& a, const T& b); template<class T, class Compare> pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp); template<class T> pair<T, T> minmax(initializer_list<T> t); template<class T, class Compare> pair<T, T> minmax(initializer_list<T> t, Compare comp); template<class ForwardIterator> ForwardIterator min_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator min_element(ForwardIterator first, ForwardIterator last, Compare comp); template<class ForwardIterator> ForwardIterator max_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> ForwardIterator max_element(ForwardIterator first, ForwardIterator last, Compare comp); template<class ForwardIterator> pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class Compare> pair<ForwardIterator, ForwardIterator> minmax_element(ForwardIterator first, ForwardIterator last, Compare comp); template<class InputIterator1, class InputIterator2> bool lexicographical_compare( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template<class InputIterator1, class InputIterator2, class Compare> bool lexicographical_compare( InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, Compare comp); // permutations: template<class BidirectionalIterator> bool next_permutation(BidirectionalIterator first, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> bool next_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp); template<class BidirectionalIterator> bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last); template<class BidirectionalIterator, class Compare> bool prev_permutation(BidirectionalIterator first, BidirectionalIterator last, Compare comp); }